
Data Structures - Cheat Sheet

Trees
Red-Black Tree

1. Red Rule: A red child must have a black father
2. Black Rule: All paths to external nodes pass through the
same number of black nodes.
3. All the leaves are black, and the sky is grey.
Rotations are terminal cases. Only happen once per fixup.
If we have a series of insert-delete for which the insertion point
is known, the amortized cost to each action is O (n).
Height:logn ≤ h ≤ 2 logn
Limit of rotations: 2 per insert.
Bound of ratios between two branches L,R: S (R) ≤ (S (L))2

Completely isomorphic to 2-4 Trees.

B-Tree

d defines the minimum number of keys on a node
Height: h ≈ logd n
1. Every node has at most d children and at least d

2 children
(root excluded).
2. The root has at least 2 children if it isn’t a leaf.
3. A non-leaf node with k children contains k − 1 keys.
4. On B+ trees, leaves appear at the same level.
5. Nodes at each level form linked lists
d is optimized for HDD/cache block size
Insert: Add to insertion point. If the node gets too large,
split.O (logn) ≤ O (logdn)
Split: The middle of the node (low median) moves up to be the
edge of the father node. O (d)
Delete: If the key is not in a leaf, switch with succ/pred. Delete,
and deal with short node v:
1. If v is the root, discard; terminate.
2. If v has a non-short sibling, steal from it; terminate.
3. Fuse v with its sibling, repeat with p← p [v].

Traversals

Traverse(t):
if t==null then return
→ print (t) //pre-order
Traverse(t.left)
→ (OR) print(t) //in-order
Traverse(t.right)
→ (OR) print(t) //post-order

Heaps
Binary Binomial Fibonacci

findMin Θ(1) Θ(1) Θ(1)
deleteMin Θ(logn) Θ(logn) O(logn)
insert Θ(logn) O(logn) Θ(1)

decreaseKey Θ(logn) Θ(logn) Θ(1)
meld Θ(n) Θ(logn) Θ(1)

Binary

Melding: If the heap is represented by an array, link the two
arrays together and Heapify-Up. O (n).

Binomial

Melding: Unify trees by rank like binary summation. O (logn)

Fibonacci Heap

Maximum degree: D (n) ≤
⌊
logϕ n

⌋
; ϕ = (1+

√
5)

2
Minimum size of degree k: sk ≥ Fk+2
Marking: Every node which lost one child is marked.
Cascading Cut: Cut every marked node climbing upwards.
Keeps amortized O(logn) time for deleteMin. Otherwise
O(
√
n).

Proof of the ϕk node size bound:
1. All subtrees of junction j, sorted by order of insertion are of
degree D[si] ≥ i−2 (Proof: when x’s largest subtree was added,
since D [x] was i − 1, so was the subtree. Since then, it could
lose only one child, so it is at least i− 2)
2. Fk+2 = 1 +

∑k
i=0 Fi; Fk+2 ≥ ϕk

3. If x is a node and k = deg [x], Sx ≥ Fk+2 ≥ ϕk.
(Proof: Assume induction after the base cases and then sk =
2 +

∑k
i=2 Si−2 ≥ 2 +

∑k
i=2 Fi = 1 +

∑k
i=0 Fi = Fk+2)

Structures

Median Heap: one min-heap and one max-heap with ∀x ∈
min, y ∈ max : x > y then the minimum is on the median-heap

Sorting
Comparables

Algorithm Expected Worst Storage
QuickSort O (n logn) O

(
n2) In-Place

Partition recursively at each step.
BubbleSort O

(
n2) In-Place

SelectionSort O
(
n2) In-Place

Traverse n slots keeping score of the
maximum. Swap it with A [n]. Repeat
for A [n − 1] .

HeapSort O (n logn) Aux
InsertionSort Aux
MergeSort O (n logn) Aux

Linear Time

BucketSort Θ (n):
If the range is known, make the appropriate number of buckets,
then:
1. Scatter: Go over the original array, putting each object in its
bucket.
2. Sort each non-empty bucket (recursively or otherwise)

1

3. Gather: Visit the buckets in order and put all elements back
into the original array.
CountSort Θ (n):
1. Given an array A bounded in the discrete range C, initialize
an array with that size.
2. Passing through A, increment every occurence of a number i
in its proper slot in C.
3. Passing through C, add the number represented by i into A
a total of C [i] times.
RadixSort Θ (n):
1. Take the least significant digit.
2. Group the keys based on that digit, but otherwise keep the
original order of keys. (This is what makes the LSD radix sort
a stable sort).
3. Repeat the grouping process with each more significant digit.

Selection
QuickSelect O (n) O

(
n2)

5-tuple Select

Hashing
Universal Family: a family of mappings H.∀h ∈ H.h : U →
[m] is universal iff ∀k1 6= k2 ∈ U : Prh∈H [h(k1) = h(k2)] ≤ 1

m

Example: If U = [p] = {0, 1, . . . , p− 1}then Hp,m =
{ha,b | 1 ≤ a ≤ p; 0 ≤ b ≤ p} and every hash function is
ha,b (k) = ((ak + b)mod (p))mod (m)
Linear Probing: Search in incremental order through the table
from h (x) until a vacancy is found.
Open Addressing: Use h1 (x) to hash and h2 (x)to permute.
No pointers.
Open Hashing:
Perfect Hash: When one function clashes, try another. O (∞).
Load Factor α: The length of a possible collision chain. When
|U | = n, α = m

n .

Methods

Modular: Multipilicative, Additive, Tabular(byte)-additive

Performance
Chaining E [X] Worst Case

Successful Search/Del 1
2 (1 + α) n

Failed Search/Verified Insert 1 + α n

Probing

Linear: h (k, i) = (h′ (k) + i)modm
Quadratic:h

(
k, i) =

(
h′ (k) + c1i+ c2i

2))mod m
Double: h (k, i) = (h1 (k) + ih2 (k))mod m

E [X] Unsuccessful Search Successful Search
Uni. Probing 1

1−α
1
α ln 1

1−α

Lin. Probing 1
2

(
1 +

(
1

1−α

)2
)

1
2

(
1 + 1

1−α

)
So Linear Probing is slightly worse but better for cache.
Collision Expectation: P [X ≤ 2E [X]] ≥ 1

2
So:
1. if m = n then E [|Col| < n] ≥ n

2
2. if m = n2 then E [|Col| < 1] ≥ 1

2 And with 2 there are no
collisions.

Two-Level Hashing

The number of collisions per level:
∑n−1
i=0

(
ni
2

)
= |Col|

1. Choose m = n and h such that |Col| < n.
2. Store the nielements hashed to i in a small table of size n2

i

using a perfect hash function hi.
Random algorithm for constructing a perfect two level
hash table:
1. Choose a random h from H(n) and compute the number of
collisions. If there are more than n collisions, repeat.
2. For each cell i,if ni > 1, choose a random hash function from
H(ni2). If there are any collisions, repeat.
Expected construction time – O(n)
Worst Case search time - O (1)

Union-Find
MakeSet(x) Union(x, y) Find(x)

O (1) O (1) O (α (k))
Union by Rank: The larger tree remains the master tree in
every union.
Path Compression: every find operation first finds the master
root, then repeats its walk to change the subroots.

Recursion
Master Theorem: for T (n) = aT

(
n
b

)
+ f (n) ; a ≥ 1, b >

1, ε > 0:
T (n) = Θ

(
nlogb a

)
f (n) = O

(
nlogb(a)−ε)

T (n) = Θ
(
nlogb a logk+1 n

)
f (n) = Θ

(
nlogb a logk n

)
; k ≥ 0

T (n) = Θ (f (n))
f (n) = Ω

(
nlogb a+ε)

af
(
n
b

)
≥ cf (n)

Building a recursion tree: build one tree for running times (at
T (αn)) and one for f (n).

Orders of Growth
f = O (g) lim supx→∞

f
g <∞ f = o(g) f

g

x→∞→ 0
f = Θ (g) limx→∞

f
g ∈ R+

f = Ω (g) lim infx→∞ f
g > 0 f = ω(g) f

g

x→∞→ ∞

Amortized Analysis
Potential Method: Set Φ to examine a parameter on data
stucture Di where i indexes the state of the structure. If ci is
the actual cost of action i, then ĉi = ci + Φ (Di)− Φ (Di−1).
The total potential amortized cost will then be

∑n
i=1 ĉi =∑n

i=1 (ci + Φ (Di)− Φ (Di−1)) =
∑n
i=1 ci + Φ (Di)− Φ (D0)

Deterministic algorithm: Always predictable.
Stirling’s Approximation: n! ∼

√
2πn

(
n
e

)n ⇒ logn! ∼
x log x− x

Scribbled by Omer Shapira, based on the Data Structures class at Tel Aviv
University.
Redistribute freely.
Website: http://omershapira.com. Source here.

http://www.omershapira.com
http://omershapira.com
http://playground.omershapira.com/Notes/DS%20Cheatsheet.lyx

